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Abstract—In this modern era, traffic congestion has become a major source of severe negative economic and environmental impact

for urban areas worldwide. One of the most efficient ways to mitigate traffic congestion is through future traffic prediction. The research

field of traffic prediction has evolved greatly ever since its inception in the late 70s. Earlier studies mainly use classical statistical models

such as ARIMA and its variants. Recently, researchers have started to focus on machine learning models because of their power and

flexibility. As theoretical and technological advances emerge, we enter the era of deep neural network, which gained popularity due to

its sheer prediction power which can be attributed to the complex and deep structure. Despite the popularity of deep neural network

models in the field of traffic prediction, literature surveys of such methods are rare. In this work, we present an up-to-date survey of

deep neural network for traffic prediction. We will provide a detailed explanation of popular deep neural network architectures

commonly used in the traffic flow prediction literatures, categorize and describe the literatures themselves, present an overview of the

commonalities and differences among different works, and finally provide a discussion regarding the challenges and future directions

for this field.

Index Terms—Deep neural network, deep learning, traffic flow prediction, traffic speed prediction, road network

Ç

1 INTRODUCTION

TRAFFIC congestion is a major problem faced by metropoli-
tan cities. In 2015, it is estimated that the avoidable cost of

traffic congestion for Australian capital cities is approxi-
mately $16.5 billion, up from the 2010 estimate of $12.8 bil-
lion. Furthermore, this value is estimated to increase to
about $30 billion by 2030 [1]. Most congestion mitigation
measures are costly, difficult to implement, or both. For
instance, Singapore implemented regulations on the number
of vehicles on roads [2], which is infeasible for countries with
poor public transportation systems. Constructing new roads
to ease congestion is also difficult due to the extremely high
cost. As an example, the estimated permile cost of a standard
one lane road inNew Jersey, USA is $220,490 [3].

With the advancements and widespread adoption of traf-
fic sensors, access to large traffic databases is now available.
This has led to the development of traffic prediction as a
research field. Educated traffic decision made through

accurate prediction is a far cheaper and easier to implement
alternative for reducing road congestion. Future traffic pre-
diction involves creating a prediction model from historical
traffic data to predict the short-term future traffic state rang-
ing from 5 to 60 minutes into the future. Traffic prediction is
different from conventional time-series analysis in that traf-
fic prediction is subject to spatial factors as well as many
other external factors. For instance, the prediction of traffic at
one site depends on the traffic at other sites and all of the sites
are affected by external factors such asweather and holidays.

Amongst all the available traffic prediction methods,
deep neural network is the most prominent. This is due to
its sheer predictive power that can model the complex and
nonlinear traffic patterns [4], [5], [6], [7], [8]. The three most
common deep neural network models used for traffic pre-
diction are Convolutional Neural Networks, Recurrent
Neural Networks, and Feedforward Neural Networks. The
increasing popularity of deep neural network models for
traffic prediction has led to numerous publications, but
issues such as the wide variety of hybrid deep neural net-
work structures have made it difficult to assess the current
state and future directions of this research field. This prob-
lem is compounded by the fact that survey works focusing
specifically on deep neural network models are rare. In this
work, we attempt to address these issues by presenting a
comprehensive overview of the area. The main audience for
our paper are practitioners interested in applying deep neu-
ral networks to the problem of traffic prediction. As such,
we have organized our paper accordingly. We will first out-
line the problem definition and a short history of traffic pre-
diction. Then, we will describe the three most popular deep
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neural network models used in traffic prediction research.
Afterwards, we will discuss traffic prediction by listing out,
categorizing and discussing 37 state-of-the-art deep neural
network for traffic prediction literatures based on the data-
set and the model. These literatures mainly cover work
from the transportation research field such as the Transpor-
tation Research Part C journal, but we also cover several
publications from the neural network and knowledge man-
agement field. All of the covered literatures are from the
years 2014 to 2019. Finally, we will discuss the present and
future challenges facing this research field. The insights that
readers can extract from this paper are:

� The deficiencies of current traffic prediction survey
work, especially with regards to the models covered.

� The development of the traffic prediction research
field from its beginnings in the 1970s.

� The strengths and weaknesses of the three most com-
mon deep neural network models used in traffic
prediction.

� The commonly used datasets in traffic prediction
research, the associated parameters and how these
affect the prediction task.

� The different ways current literatures utilize the
deep neural network models for the prediction task.

� The current challenges facing the traffic prediction
task and how these challenges have been solved, or
partially solved, by the introduction of deep neural
network methods.

� The future challenges facing traffic prediction and
how to deal with these challenges.

In Section 2, we first provide an overview and history of
the traffic prediction field. Section 3 describes the workings
of the three main deep neural network models: Convolu-
tional Neural Networks, Recurrent Neural Networks and
Feedforward Neural Networks. Our work is focused on
Section 4, where we categorize and discuss the literature. We
split this section into two: Section 4.1 discusses the datasets
used in the literature, while Section 4.2 discusses the models.
We also provide a short discussion on Section 4.3. Then, in
Section 5, we will describe the challenges of traffic prediction
research. Section 5.1 describes the current challenges of traf-
fic prediction research and how they have been addressed or
partially addressed through the adoption of deep neural net-
works. Afterwards, Section 5.2 discusses the future chal-
lenges and how they can be addressed. Finally, we conclude
our work in Section 6.

Comparison to Other Survey Work. One of the most impor-
tant literature surveys of this field is the work of Vlaho-
gianni et al. [9]. Their work mainly discussed the challenges
of traffic prediction, focusing more on the research field
rather than the models. Additionally, the authors covered
the literatures from 2006 to 2013, which do not include the
now ubiquitous deep neural network models. Another dif-
ference is in the model taxonomy; their work categorized
the models based on several criteria such as the type of
model (e.g., statistical, neural network, hybrid model) and
the problem (e.g., time series, function approximation). This
taxonomy is outdated because modern traffic prediction
models are mainly based on deep neural network, which
under their taxonomy will all fall under the neural network

category of model and function approximation category of
problem. Our taxonomy on the other hand, is designed to
provide a more up-to-date categorization of models.

A recent paper by Nagy and Simon [10] is a more up-
to-date survey on traffic prediction. They provided an over-
view of the different types of models used for this task.
However, their model taxonomy only has a few points of
comparison, which are: whether or not the model integrates
environmental data, contains spatial property, handles non-
linearity and handles nonstationarity. We perform a more
comprehensive comparison on both the models and the
data, totaling eleven points of comparison combined. Addi-
tionally, their work does not have a future challenges section
that discusses how the field can be advanced. We provide
this discussion in Section 5.

The work of Zhu et al. [11] provides another up-to-date
survey of the field. However, their work focuses on big data
analytics without much focus on the actual models. Our
work provides a more balanced approach by discussing
both the models and the datasets in Section 4. We also dis-
cuss the field as a whole, through the discussion of future
challenges, in Section 5.

Finally, we would like to express the importance of com-
parisons between different hybrid deep neural network
model implementations. Due to the availability of deep neu-
ral network libraries such as Keras [12], PyTorch [13], and
TensorFlow [14], development of complex neural network
models has become much easier. Consequently, the trend is
to use different hybrid models to capture the different
aspects of the data, such as the temporal aspect and the spa-
tial aspect. Because of this reason, it is very important to
perform a thorough comparison among different hybrid
models that capture different aspects of the data, or even
the same aspects using different ways. To the best of our
knowledge, our work is the first one to attempt such task.

2 BACKGROUND

In this section, we first describe the problem formulation of
traffic prediction. Then, we briefly outline the history of traf-
fic prediction and show why deep neural network became
the benchmark category of methods.

Traffic prediction concerns the usage of a learnable func-
tion that takes as input the historical traffic data from sev-
eral previous time-steps in order to predict the traffic in the
future. Two main types of traffic data used are traffic flow
and traffic speed. Traffic flow is denoted as the total number
of vehicles detected in a target detection site during a cer-
tain time period. Traffic speed is denoted as the average
traveling speed of vehicles detected in a target detection site
during a certain time period. In this section, we will use the
general term “traffic” to refer to both traffic flow and traffic
speed. The traffic prediction problem can be denoted as:

ŷtþT 0 ¼ fð½Xt�T�1; Xt�T ; . . . ; Xt�Þ

The objective is to find the model parameters which mini-
mize the error between the predicted traffic and the observed
traffic:

u� ¼ argmin
u�

LðytþT 0 ; ŷtþT 0 ; u�Þ
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� yt : The observed traffic at time t
� ŷt : The predicted traffic at time t
� T : Input sequence length, i.e., how many time steps

of past traffic data are used as the input.
� T 0 : Prediction horizon, i.e., how many time steps in

the future the prediction is for.
� f : An arbitrary function that calculates the traffic

prediction based on the input data.
� L : Loss function, which is the function that calcu-

lates the quality of the prediction.
� u� : The optimal set of parameters for the function f
All of f , L, and u� depend on the actual model used. We

will now discuss the different types of prediction models
that have been used for traffic prediction in the past.

The field of traffic prediction has existed for almost five
decades and covers a wide array of methodologies which
can be divided into three main categories. The first category
belongs to the classical statistical models, of which the
Autoregressive Integrated Moving Average (ARIMA) fam-
ily of models is the most popular. Ahmed and Cook are the
first researchers to apply ARIMA to traffic prediction [15].
Shortly after, Levin and Tsao [16] applied ARIMA on two
freeway locations and found that the ARIMA(0,1,1) model
is the most statistically significant.

Other authors also applied different versions and
improvements to ARIMA. Lee and Fambro [17] applied sub-
set ARIMA and found that it provides stable and accurate
results.Williams [18] discovered the impact of upstream traf-
fic sensors to downstream ones and applied ARIMAXmodel
for traffic flow prediction. Williams and A. Hoel [19] applied
Seasonal ARIMA to the United States and the United King-
dom traffic data. Kamarianakis and Prastacos [20] discussed
and compared the Vector Autoregressive Moving Average
and Single Space-TimeARIMAmodel.

Despite the popularity, classical statistical models are rel-
atively weak. This is because they are simple linear models
which assume that the traffic is stationary. Consequently,
they frequently fail when handling the complex, nonlinear
traffic data [6], [8], [21], [22]. Additionally, these models
were proposed at a time where traffic data were simpler
and much smaller in size [23], a condition that no longer
holds true in the present day where the ubiquity of traffic
sensors has caused an explosion in traffic flow data.

Due to the aforementioned deficiencies of classical statis-
tical models, researchers flocked to machine learning mod-
els. Machine learning models are flexible as they can learn
from the data. That is, the parameters of the prediction func-
tion are adjusted automatically as the model traverses
through the dataset, as opposed to the classical statistical
models in which the function parameters are manually
defined a priori [24]. The main weakness is that machine
learning models are data intensive [25]. However, as previ-
ously mentioned, large traffic flow data are now available.
For more differences between classical statistical models
and machine learning models, we refer readers to the work
of Karlaftis and Vlahogianni [21].

Out of the different machine learning models, neural net-
work is the most commonly used. The reason behind its
prominence is that many other machine learning models’
feature extraction phase, which helps extract useful patterns
and information from the data to help the prediction, is

done manually (i.e., using manually tuned kernels). On the
other hand, neural networks perform automatic feature
extraction as well as the actual prediction in one model.

One of the first neural network applications in traffic
flow prediction was by Dougherty et al. [26]. Since then, var-
ious improvements to the neural network structure have
been proposed. Vlahogianni et al. [27] proposed a genetic
algorithm approach to optimally tune the network. Zheng
and Lee [28] used multiple neural network predictors which
are combined using the theory of conditional probability
and the Bayes rule. Time delay neural network model was
applied to traffic prediction in 2005 by Zhong et al. [29].
Chan et al. [30] imbued a neural network model with the
hybrid exponential smoothing method to preprocess train-
ing data and the Levenberg-Marquardt algorithm to train
the network weights. Other types of machine learning mod-
els aside from neural network were also used, such as the k-
Nearest Neighbor [31], [32], [33] and the Support Vector
Regression [34], [35], [36].

While machine learning models, and especially neural
network, are more powerful compared to statistical models,
they are very hard to train efficiently. Thus,machine learning
models during the 2000s utilize shallow and simple struc-
tures, limiting their prediction power. However, the increas-
ing computational power, as well as theoretical and software
improvements in recent times had made increasingly com-
plex neural network models feasible to train. Thus, in the
middle of the 2010s, researchers started to apply deep neural
networkmodels for traffic prediction.

Deep neural networks consist of complex neural network
models with a large number of layers. Some examples are
Recurrent Neural Network, Convolutional Neural Network,
Feedforward Neural Network, and hybrids of these models.
Some of the deep neural network models can explicitly cap-
ture different aspects of traffic data, which made them even
more attractive. For instance, CNN can explicitly capture
the spatial aspect of traffic data while RNN can explicitly
capture the temporal aspect of traffic data. Additionally, the
increased number of layers improves the models’ prediction
capability. This factor allows them to model traffic fluctua-
tions more accurately.

While the strengths of deep neural network models made
them attractive, they also possess several disadvantages
compared to the older methods:

� Deep Neural Network Models Require a Large Amount of
Data That Covers all Traffic Conditions. If the amount
of data is too small or if the data is not diverse
enough, the model’s generalization capability is
compromised.

� Deep Neural Network Models Still take a Long Time to
Train. As deep neural network models are complex
and have a large number of layers, the training time
can be very long. This problem is compounded on
hybrid deep neural network models. As classical sta-
tistical and older machine learning models are not as
complex, their training time is much shorter.

� Deep Neural Network Models are Difficult to Interpret.
This is because of two reasons: the number of inter-
nal parameters is very large, and the parameters are
learned from training, not set manually. Thus, while
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they can predict well, it is hard to understand their
parameters. Understanding the parameters may
reveal important information such as the spatiotem-
poral dynamics in the road network.

Summary. Traffic prediction is a task of training an arbi-
trary function to predict future traffic given past traffic data.
The earliest class of models used is the classical statistical
models. Afterwards, machine learning models improve
upon the performance of classical statistical models. Then,
the deep neural network class of models dominates the field
due to its capability in capturing the complex and nonlinear
patterns in traffic data.

3 DEEP NEURAL NETWORK

In the following subsections, we will discuss different core
deep neural network structures, their intuitions, and appli-
cations in the context of traffic prediction.

3.1 Convolutional Neural Network

A Convolutional Neural Network has the capability to learn
inherent features progressively, starting from low level fea-
tures and then building up to more abstract concepts
through a series of convolutional layers. Although this
strength contributes to its popularity in image recognition,
CNNs have been regularly applied to traffic flow prediction.
The intuition is that traffic flow readings can be modeled as
an image, where each pixel corresponds to the traffic inten-
sity at a certain block of area. Thus, similar techniques devel-
oped for image recognition can be easily applied.

A CNN consists of several “convolution” and “pooling”
layers. Convolution’s purpose is to extract features from the
input, whereas pooling’s purpose is to reduce the dimension-
ality of each feature map but preserve the most important
information. Given a road network, the input of a CNN is pre-
processed by partitioning the network as a grid, which is
essentially a set of cells with each cell representing an area in
the data space and the value associated with the cell repre-
senting the number of vehicles detected in that cell at a certain
point in a time period (e.g., 5� 5 cells in Fig. 1). The traffic
flow reading for each time periodwill be representedwith the
same grid but different number of vehicles. Thus, the entire
traffic data modeled this way can be seen as several images
with the same size but different pixel values.

Applying the convolution and pooling layers results in a
smaller output that represents higher-level latent features.
As an example, in traffic flow prediction, the first few layers
may summarize the traffic condition of several city blocks.

Further applications may summarize the traffic of these city
blocks into traffic condition for an entire city district and so
on. Mathematically, convolution layers extract features by
computing the dot product between a matrix of some preset
values (referred to as filter) and a subset of cells from the
original grid, which produces a matrix that is called feature
map. The example in Fig. 1 shows, (i) the top-left 3� 3 sub-
set of cells produces the value 470, and (ii) the bottom-right
3� 3 subset of cells produces the value 170 in the feature
map. This can be interpreted as the top-left subset having a
much higher number of vehicles in that region than the bot-
tom-right subset.

Unlike most neural networks, CNN’s layers are not fully
connected. Consequently, the number of parameters and
training time are significantly reduced. Additionally, CNN
uses a weight sharing mechanism, which further reduces the
number of required parameters. Since CNN’s layers are not
fully connected, one layer of CNN does not learn from all of
the previous layer’s features. However, this actually proves to
be an advantage in many applications as CNN can learn how
the different parts of the input relate to each other spatially.

In the application of traffic prediction, CNN is often used
as a component in a hybrid deep neural network, whose
task is to capture the spatial aspect of traffic data. This is
because different roads in different locations may be corre-
lated and these correlated roads share similar traffic trend.
Therefore, the traffic of the correlated roads may rise or fall,
depending on their historical data [37]. For instance, during
the evening, there is a strong correlation between the road
traffic of commercial and residential districts because
employees are heading off from work.

3.2 Recurrent Neural Network and Long
Short-Term Memory

Recurrent Neural Networks are commonly applied to
sequence data because of their memorization capability,
which can learn both long and short term dependencies
between parts of the sequence. Additionally, RNN is able to
scale to longer sequences compared to other network archi-
tectures. Its unique capability makes it one of the most pop-
ular deep neural networks.

An RNN consists of a single node with a recurrent con-
nection, but is often visualized as a chain of nodes, with
each node representing the network state at a particular
recurrence/time step. This visualization can be seen in
Fig. 2. The node state st processes the input data xt at time t,
as well as a ‘summary’ of all the information obtained up to
time t� 1. This summary is stored in st�1, and it memorizes
which parts of the sequence are important. Node st then has
the summary up to time t and this information is passed to
the next node state stþ1. Thus, the node state st stores the
state of nodes for all the previous time steps until the begin-
ning of the input (i.e., st�1, st�2, ...). The output ot is then
compared with the ground truth yt in order to calculate the
loss, which is used to fine-tune the model parameters. In
traffic prediction applications, the input to an RNN consists
of past traffic readings. A continuous time period is divided
into discrete time blocks and the traffic flow reading from
each block is fed into the RNN.

By its nature of being able to take in possibly very long
sequences, RNNsuffers from the vanishing gradient problem,

Fig. 1. An example of a convolution process.
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which hinders the network’s ability to memorize information
for a long time. For this reason, Hochreiter and Schmidhuber
[38] proposed the Long Short-Term Memory (LSTM), which
was further improved in [39].

LSTM also contains multiple layers, each possessing a
cell with the memorization capability. In addition, it con-
tains three gates, which control how information propagates
throughout the network. These gates are the input gate i,
which controls the importance of the inputs xt and ht�1, for-
get gate f which controls how much of the previous infor-
mation Ct�1 is to be forgotten, and the output gate, which
controls how relevant is the current information Ct for the
next step. As can be seen in Fig. 3, it maintains the RNN’s
recurrent structure, but introduces the three gates to control
the cell value.

RNN-based methods in general possess the major advan-
tage in the form of its memorization capability. The ability
to learn important parts of the sequence and then knowing
when to memorize or forget them had led RNN to be the
prime choice for sequence data. Due to this, RNN based
models have been applied in many fields such as named
entity recognition [40], voice recognition [41], music compo-
sition [42], and image caption generation [43]. However,
RNN’s recurrent structure leads to significantly longer
training time compared to other deep neural network
models.

In the field of traffic prediction, LSTM as well as other
variants of RNN-based methods are commonly used as a
component in hybrid deep neural network models. Its task
is to capture the temporal patterns of traffic data; learning
how traffic evolves over time.

3.3 Feedforward Neural Network

A Feedforward Neural Network, which is also commonly
referred to as Fully Connected Neural Network (FC or
FCNN), is one of the earliest and simplest neural network
models. It consists of several layers of fully connected
computational nodes organized in many layers. The value
of every node in the hidden or output layers is computed by
taking the weighted sum of all of the previous layer’s nodes
and then passing the value to a nonlinear function such as
sigmoid, tanh and relu.

The FNN’s fully connected structure enables each of its
layers to process the combination of all the previous layer’s
features. However, this also serves as a weakness because
its full connection results in a large amount of parameters.
Consequently, the training process of FNNs can be quite
time consuming. In addition, FNNs do not have the capabil-
ity of explicitly capturing spatial or temporal data. Because

of this, FNNs are rarely used as the main predictor in deep
neural network literatures.

For traffic flow prediction, FNNs usually serve a utility
role in a hybrid deep network, whosemain purpose is to per-
form tasks such as aggregating outputs from different com-
ponents within the network, dimensionality transformation
and incorporating external data such as weather. This is
because the size of input layer or output layer can be setman-
ually, which gives FNN the capability to transform inputs of
an arbitrary dimensionality to an output of an arbitrary
dimensionality. When used to integrate external data, the
input depends on the type of external data. Numerical values
can be provided as it is while categorical values need to be
transformed first (e.g., using one-hot encoding). For aggre-
gating outputs and dimensionality transformation, the
inputs depend entirely on the model. More details on FNN’s
application in the traffic prediction domain can be found in
Section 4.2.3.

Summary. In this section, we described three popular
deep neural network architectures, their strengths, weak-
nesses, and applications. RNN is commonly used to capture
the temporal trends of traffic data–the dynamics of how
past traffic can influence future traffic. CNN is commonly
used to capture the spatial trends of the data–how traffic
propagates through the road network. FNN can aggregate
the output from different subnetworks and also can process
external data such as weather information. We will describe
the typical usage of these models in Section 4.2.

4 DEEP NEURAL NETWORK FOR TRAFFIC FLOW

PREDICTION

In this Section, we will describe 37 literatures and the meth-
odologies used to predict traffic flow. We only consider
recent (2014 to 2019) papers that provide sufficiently novel
improvements and contributions to the field. In the first
subsection, we will discuss the datasets in terms of the main
and secondary datasets, as well as the dataset-related
parameters and how they affect the prediction task. Then,
in the second subsection, we discuss how these different
deep neural network models are used.

4.1 Traffic Flow Prediction – Data

Tables 4 and 5 provide an overview of 37 existing works,
with each column representing a decision that researchers
have to make with regards to traffic flow prediction data.
Do note that when a work uses more than one datasets, the
settings for those datasets may differ. Hence, we use num-
bers to denote the different datasets and their settings. For
instance, [44] uses the LA traffic data from Mar 2012 to Jun

Fig. 2. A recurrent neural network.

Fig. 3. Visualization of how information propagates through an LSTM.
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2016, and the Caltrans PEMS data from Jan 2017 to May
2017. Thus, we assign the number 1 to LA traffic data and
number 2 to Caltrans PEMS data, and their corresponding
settings in other applicable columns will be represented
with these numbers as well. In the case of [5], they use two
different datasets, but both have the same parameters, so
we only use the numbers for the “Primary Dataset” column.

Main Dataset.As can be observed from Tables 4 and 5, the
Caltrans data1 is by far the most commonly used dataset.
This is because of its public availability, ease of download,
simple structure and long historical data. The Caltrans data
provides information regarding date, time stamp, traffic
flow per lane, and aggregated traffic flow. Traffic flow is the
most commonly used field, but occupancy and speed infor-
mation is also available. The data granularity can be set to 5
minutes, hourly, daily, weekly and monthly depending on
user requirements.

Numerous authors use data from Beijing. However, it is
unclear as to whether or not all of the Beijing-based datasets
come from one unified dataset source. These datasets usu-
ally cover the Ring Road area, as can be seen in the works
[45], [46], [47], [48] and [49]. The dataset used by Ma et al.
[45] contains the traffic volume, occupancy and speed data,
similar to Caltrans.

Unlike point data that has a dataset being considered as
the standard, the trajectory data used in these traffic predic-
tion experiments do not have a standard dataset. Different
works use different datasets with different properties,
including the origin country (mostly America or China),
method of transportation (cars, taxis or bicycles) and time
range. Amongst these works, trajectory data from Beijing is
relatively more popular. We summarize the top-3 most pop-
ular main datasets in Table 1, which cover 70 percent of the
literature works we surveyed. Please take note that many
works use more than one main datasets.

Secondary Dataset. Secondary dataset is not commonly
used in the literate studies. Among the 37 works we sur-
veyed, only 10 use secondary dataset, as observed from
Tables 4 and 5. We list the top-3 popular secondary datasets
in Table 2. Please take note that multiple secondary datasets
might be used by one work.

According to our observations, the low usage of second-
ary dataset is mainly caused by the difficulty of integrating
the main data with the secondary data. For instance, one
model that uses the Caltrans data covering a long highway
will need to match the time stamp, the latitude, and the lon-
gitude of each reading in order to find the appropriate
weather and accidents data. This task is very difficult. Fur-
thermore, there is some added time complexity of aggregat-
ing the different data together, which is undesirable,
especially in an already time-consuming hybrid deep neural
network structure.

Conversely, time-of-day and day-of-week data are much
easier to incorporate. They can be very useful as the inclu-
sion of time-of-day data allows the model to learn the differ-
ence between traffic conditions during various periods
within a day while the inclusion of day-of-week data allows
the model to learn the traffic patterns of different days,
which is especially important in distinguishing weekdays
and weekends traffic. These features are used by Yu et al.
[55], and their experiments show that the inclusion of these
factors improves the prediction performance.

Data Time Range. One major deficiency we have observed
in the field of deep neural network for traffic flow predic-
tion is the insufficient data time range. 26 out of 37 litera-
tures in Tables 4 and 5 use less than one year’s worth of
data. This deficiency will have an adverse impact on sub-
tropical regions, as seasonal changes may affect tempera-
ture and weather, which in turn can affect traffic. By using
data from only one or a few months, the model cannot gen-
eralize to different seasons. This can be mitigated by incor-
porating weather data, but as mentioned before, this is a
difficult and time-consuming task.

Some authors also use data from only a certain range of
hours or use data from weekdays only. This will also cause
problems as the model cannot generalize well to situations
outside the boundaries of the provided data. For instance,
using traffic data from 07.00 AM to 11.00 PM only may
reduce the model’s performance on the excluded hours,
and using only weekdays data may adversely impact the
model’s performance when predicting weekend traffic. In
Table 3, we summarize the data time ranges from the cho-
sen literatures.

Deep neural network models are flexible and can adapt
well to data. Consequently, using vastly different datasets
may result in an entirely different model. Thereby, for a
model to be applicable to real application scenarios, it is
important to use a dataset that closely resembles those
scenarios.

Data Granularity. Most of the literatures in Tables 4
and 5 use a data granularity of 5 minutes. This is likely
caused by the availability of that granularity as a default set-
ting in common datasets such as Caltrans. Although, The

TABLE 1
Popular Main Datasets

Main Dataset Data Type Sample References Popularity

Caltrans PEMS Point [5], [50], [51], [52] 14 out of 37
Beijing dataset Point [45], [46], [47] 6 out of 37
Beijing dataset Trajectory [4], [53], [54] 6 out of 37

TABLE 2
Popular Secondary Datasets

Secondary Dataset Sample References Popularity

Weather [47], [52], [56] 6 out of 37
Time of day/day of week [55], [56] 3 out of 37
Road network [7], [57] 3 out of 37

TABLE 3
Data Time Ranges

Data Time Range Sample References Popularity

One month [45], [53] 5 out of 37
Several months [50], [52] 22 out of 37
One year [5], [58] 6 out of 7
More than one year [6], [54] 4 out of 37

1. http://pems.dot.ca.gov/
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Highways Capacity Manual [75] recommended a data
granularity of 15-minutes, which saw some authors aggre-
gate the 5-minute readings from Caltrans to 15-minute
readings.

Depending on the dataset, the data granularity is a
potentially important hyperparameter. Using a data gran-
ularity that is too small may cause a lot of zero values,
especially during conditions where traffic is very sparse.
For example, it is highly likely for a traffic loop detector
to not detect any cars in 2 or 5 minute periods during off-
peak hours (e.g., 02:00-04:00 AM) while this becomes less
likely if the granularity is increased to 15 minutes or
more. On the other hand, using a granularity that is too
high might result in the smoothness of the traffic flow
reading where important trends are lost. For instance, if
the traffic experiences periodic shifts during 12:30PM,
this trend might not be detected if the data granularity is
one hour.

Data granularity also impacts the number of possible
data points as well as the size of the input sequence. Using a
smaller granularity will increase the length of the required
data sequence. For instance, one hour’s worth of data can be
captured with only a sequence of length 4 when the granu-
larity is 15 minutes, but when the granularity is 5 minutes,

the sequence length is 12. This can impact training time,
especially for RNN-based models.

Due to the aforementioned reasons, choosing the correct
data granularity becomes a decision based on trade-offs and
should be considered carefully depending on the data, the
model, as well as the application scenarios.

Input Sequence Length and PredictionHorizon.As can be seen
in Tables 4 and 5, many authors perform experiments with
different prediction horizons and use different input
sequence lengths for each of the selected prediction horizons.
Hence, for the works that use a certain input sequence length
for a certain prediction horizon, we use the alphabets to
denote that these parameters are paired. For instance, in [50],
for predicting traffic 15 minutes in the future, they use 15
minutes of input data and for predicting the traffic 45minutes
into the future, they use 20 minutes of input data. There are
some works such as [53] where the alphabets are not used. In
this case, the input sequence length and prediction horizon
are parameters that the authors explore separately.

Intuitively, as we increase the prediction horizon, the
input sequence length also needs to be increased. This is
because the increase in prediction horizon means predicting
the traffic of further time frame in the future and thus,
increasing the task complexity. Increasing the size of the

TABLE 4
Data Categorization for the Covered Literature
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data points by extending the input sequence may help in
tackling the complex problem.

Some authors use data from multiple granularities and
for each granularity, they may use different input sequence
length. For instance, Wu and Tan [6] use the data from same
day, previous day and previous week. The input sequence
lengths are 75, 30 and 30 minutes respectively. Zhang et al.
[62] use the same data selection scheme. For the same day
data, they use input sequence length of 90, 120 and 150
minutes. For the day and week, they use the previous 1, 2, 3
and 4 days’ and week’s data.

Unfortunately, the relationship between the input seq-
uence length and the prediction horizon is rarely explored by
the literature. Most of the input sequence lengths were cho-
sen arbitrarily without iterating through different possible
values. This is because hybrid deep neural network struc-
tures take a long time to train, which makes iterating through
different settings unwieldy. Despite this issue, hyperpara-
meter search remains an important facet of deep neural net-
work development that cannot be omitted. One possible
remedy of this problem is to first use a smaller data, chosen
randomly from the main dataset, to find the optimal parame-
ter setting.

4.2 Traffic Flow Prediction – Model

The models used by the surveyed works are listed in
Table 6. As observed, the two most commonly predicted
values are traffic flow and traffic speed. This is because
these two values are available in many popular traffic
datasets. However, there are several works that deviated
from these conventional data. For example, the work of
Cheng et al. [7] predicted traffic condition, which consists
of four categories: fluency, slow, congestion and extreme
congestion. Zhang et al. [62] and Wang et al. [65] predicted
crowd flow instead of traffic flow. Crowd flow measure-
ments are the same as traffic flow, but they are designed
for general human mobility instead of automobile mobil-
ity. In a more recent work by Liang et al. [70] for predicting
crowd flow, a fine-grained prediction is performed using a
coarser data (e.g., predicting crowd flow of different
school buildings given crowd flow of the entire university
area) instead of using historical data.

The column “Spatial / Temporal” in Table 6 specifies if
the spatial and/or temporal factors were explicitly captured
within the model. A model is said to explicitly capture spa-
tial or temporal aspect if it satisfies at least one of the follow-
ing two conditions.

TABLE 5
Data Categorization for the Covered Literature Contd.
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TABLE 6
Traffic Flow Prediction Models
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� The model or at least one of its sub-components is
specifically designed for capturing the spatial and/
or temporal aspect.

� The data is modeled in such a way that it inherently
contains the spatial and/or temporal information
(e.g., using adjacency matrices to capture spatial
information).

This is important as different models are proficient with
capturing different aspects of the data. We will discuss the
different models next.

4.2.1 RNN

Amongst the RNN-based methods, LSTM is by far the most
popular one, totaling 18 out of the 37 literatures. Variants
such as Gated Recurrent Unit are used in several works, but
it is far less common. LSTM is the most common choice for
not only capturing temporal aspect but also traffic flow pre-
diction in general.

We speculate that this is because traffic data constitutes a
temporal sequence, which fits LSTM’s purpose. Addition-
ally, most available traffic flow data is compatible with
LSTM, as these traffic flow data can easily be modeled as a
sequence of traffic flow readings. For instance, the traffic
flow between 11:00 and 12:00 can be captured as the aggre-
gated traffic reading for four periods, including 11:00-11:15,
11:15-11:30, 11:30-11:45, and 11:45-12:00. This data can be fed
into an RNN, resulting in an RNNwith four recurrences.

Basic RNN. To the best of our knowledge, the work of Ma
et al. [45], and that of Tian and Pan [51] were the first few
applications of basic LSTM. Since then, LSTM has been
mostly applied in a hybrid setting, but there are still some
applications of basic LSTM where the core of the model lies
in how the data is modeled. For example, Fouladgar et al.
[60] and Kang et al. [61] use an LSTM that takes in readings
from multiple time slots as well as multiple detectors. The
data is modeled in a matrix, which captures both the spatial
and temporal aspects of the data.

RNN in a Hybrid Setting. As complex deep neural net-
works are becoming viable to train, most authors have uti-
lized the hybrid neural network setting, which combines
different neural network structures into a larger entity, to
maximize the prediction performance. From Table 6, we can
see that 21 out of 37 literatures utilize hybrid neural net-
work. The popularity of the hybrid neural network struc-
ture is mainly due to its power and flexibility of utilizing
the different strengths of its individual components. In a
hybrid setting, RNN is used in one of the following ways:

1) Outputting features to be fed into a fusion layer.
2) Outputting features to be fed into subsequent com-

ponents within the model.
3) Used as the main predictor, but with modifications

to the internal structure.
The first method is the simplest because models that fall

into this category usually consist of several simpler subnet-
works that only interact at the final fusion layer. Wu and
Tan [6] used a combination of a CNN and two LSTMs to
capture spatial features, the short-term temporal feature,
and the periodic temporal feature respectively. The outputs
from these three networks are then fed into a FNN to fuse
the features. This demonstrates one of the common usages

of FNN we have discussed in Section 3.3 previously. Du
et al. [59] used a combination of a CNN component and an
LSTM component to capture spatial features and temporal
features respectively. The outputs from these networks are
combined to form the prediction. Another example is work
[55] which used a combination of a Stacked Autoencoder to
encode traffic accidents data and an LSTM to capture the
temporal aspect of the data.

The second method treats LSTM as a pipeline that trans-
forms one feature representation to another. Cheng et al. [7]
used an LSTM to process the outputs from a CNN before
passing them to a max-pooling layer. Dai et al. [8] per-
formed a detrending process on the input before passing it
to the LSTM layer. Yu et al. [4] first used a CNN to encode
the spatial aspect of the data and then fed this processed
information to an LSTM to learn the temporal aspect. Cui
et al. [23] performed masking to fill in missing values in the
data before passing it to a bidirectional LSTM for feature
transformation and then a regular LSTM for the prediction.
Zhao et al. [68] used a Gated Recurrent Unit which takes
input from a Graph Convolution Network and outputs the
predicted traffic. Yao et al. [67] used multiple LSTMs that
represent the daily traffic features. Finally, Wu et al. [66]
used a Gated Recurrent Unit to learn feature representation
from an attention model which are then fused with the
CNN spatial component. As observed, in this category of
method, some preprocessing steps such as the masking of
missing values can be a part of the architecture.

The third method is the most complex one, as it requires
modifying the internal LSTM structure. Cui et al. [63] mod-
ified the LSTM calculation to include a graph convolution
process as well as using a novel Real-Time Branching
Learning (RTBL) which modifies the backpropagation pro-
cess. Li et al. [44] replaced the matrix multiplication inside
Gated Recurrent Unit with the diffusion convolution
operation.

In addition to these methods, the encoder-decoder RNNs
are also used in many recent studies. Encoder-decoder
RNNs are partly inspired by autoencoders. Autoencoders
are deep neural network structures that consist of two parts:
the encoder that takes an input and produces a vector repre-
sentation of it (usually with a smaller dimension), and the
decoder that takes the vector representation and produces
an approximation of the original input. In encoder-decoder
RNNs, both input and output are sequences, and instead of
approximating the original input, the target output is a
ground-truth sequence (e.g., prediction for 5, 10, 15, 20, 25,
and 30 minutes into the future). This model is used in [44],
[57], [71], [69], [72] and [73], and has demonstrated state-of-
the-art performance.

Other RNN Uses. Some authors have used RNNs to cap-
ture both the temporal and the spatial aspects of the data.
Kang et al. [61] captured the temporal aspect by feeding
data from multiple traffic loop detectors at once into an
LSTM. Zhao et al. [49] used one LSTM for each traffic loop
detector and incorporates an Origin Destination Correlation
(ODC) matrix, which weighs how much the traffic of one
loop detector’s location affects another. Finally, Wang et al.
[65] replaced the dense kernels in LSTM with convolutional
ones to successfully use an LSTM to capture both the spatial
and the temporal aspects of traffic data.
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In addition, RNN has been used to capture the temporal
aspect of the data using different granularities. As discussed
in Section 3.2, RNN-based methods are commonly used to
learn the temporal patterns of traffic data. However, we
also mentioned that RNN-based methods are time-consum-
ing. Consequently, RNN-based methods are not usually fed
very long input sequences. Several data modeling-based
approaches have been explored to mitigate this problem.
The most common method is to use multiple LSTMs with
each taking shorter sequences from a specific granularity.
As an example, if we want to predict the traffic at 09:00 AM
at December 25, one RNN can be used to capture the data
from 06:00, 07:00, and 08:00 AM at December 25 (hourly
granularity), one RNN can be used to capture the data from
09:00 AM at 22, 23 and 24 December (daily granularity) and
one RNN can be used to capture the data from 09:00 AM at
4, 11 and 18 December (weekly granularity). This method is
used by Wu and Tan [6], Yao et al. [67] and Wu et al. [66].

4.2.2 CNN

A CNN is the optimal choice for capturing the spatial aspect
of the data. As mentioned in Section 3.1, CNN is able to cap-
ture the correlation between different regions in the road net-
work. By utilizing this strength, a CNN can learn the spatial
dynamics of traffic in order to improve the prediction accu-
racy. However, the way CNN captures this aspect strongly
depends on the type of the data.

In traffic flow prediction, there are two main data types,
point and trajectory, which cover the majority of the works
we surveyed. The only exceptions are [63] and [23], which
use road link data with point data as the main datasets. As
we can treat road links as detection sites, we can regard
road link data as a special type of point data. Deep neural
network models, hybrid or otherwise, that are applicable
for one data type are incompatible for the other without
major modifications. Consequently, we categorize works
related to CNN based on the type of the main datasets.

CNN With Point Data. From Table 6, we can see that most
authors use point data in their work. Point data consists of
traffic readings from road-installed sensors. This data is
popular due to its availability and compatibility with deep
neural network models; usually, point data does not require
major data transformation step and can be used as it is.

For point data, spatial aspect is typically captured by col-
lating data from multiple detection points into vectors.
Sometimes, matrices can be used when capturing both the
spatial and the temporal aspects. In addition, tensors can
also be used when there are multiple matrices to be used all
at once, such as when we are inputting the spatio-temporal
traffic data from multiple days at once. These vectors/
matrices/tensors are then fed as input into the network
where a CNN resides.

The advantages of using point data are:

� Common Public Data Are Available. For instance, the
Caltrans data is very commonly used in the litera-
ture. Although each work uses different subsets, the
availability of one unified data source makes it easier
to establish a benchmark data.

� Data Transformation is Simpler. To obtain an input
data that contains both the temporal and the spatial

trends, the common procedure is to simply collate
the data into vectors/matrices/tensors.

� Works Better for Methods That are Based on the Graph
Space. Point data often constitutes traffic detectors
installed on roads, which can be easily converted to
graphs; each detector site can be treated as a vertex
and every two adjacent detectors define an edge. We
will discuss graph-based methods in Section 4.2.5.

Although point data has multiple advantages as detailed
above, it also has some limitations as listed below:

� Almost Exclusive Highways Data. Since traffic loop
detectors are difficult and expensive to install, they
are not commonly available for arterial roads.

� Not Compatible With Methods That Conform to the
Euclidean Space (e.g., 2D CNN). This is because most
point-based data are highways data where the traffic
detectors are spatially organized in a line.

There are two main methods to utilize point data in a
CNN. The first method is to use a 1D CNN as it is compati-
ble with point data which are commonly organized in a
line. This method is used by [6] and [59]. The second
method is to capture both the spatial and the temporal
aspects of the data in a 2D matrix to be fed into a CNN. That
is, one axis of the matrix captures the different traffic detec-
tion sites and the other is used to capture the different time
steps. This method is used by [60], [58], [53] and [64]. The
work of Wu et al. [66] used both of these methods for differ-
ent purposes.

CNN With Trajectory Data. For trajectory data, utilizing
the euclidean space is common. Each trajectory needs to be
mapped onto a 2D plane which represents the region (e.g.,
city, country) where the data resides. This region is divided
into grids where each grid represents a subregion. Process-
ing the data this way yields a matrix that represents the traf-
fic state of a region, which can be fed into a CNN to capture
the spatial aspect.

The advantages of trajectory data are:

� Not Exclusive to Highways Data. Trajectory data are
usually GPS data, which cover both arterial roads
and highways.

� Works Better for Methods That are Based on the Euclidean
Space. After the data processing, the spatial correla-
tion is inherently captured within the resulting 2D
plane. Additionally, the resulting data transforma-
tion output is a matrix, which naturally fits 2D CNN.
Finally, trajectory data usually cover city regions,
which usually conform to the 2D shape.

� Results are Easily Interpretable. By visualizing the val-
ues assigned to each grid in the 2D map, the region’s
traffic flow prediction can be observed directly.

The disadvantages of trajectory data are:

� Complex Data Transformation. The process of map-
ping each trajectory point to the 2D plane is complex
and time consuming.

� Not Compatible With Methods That Model Their Data
Using Graph-Based Methods. Points in the road net-
work can be transformed into vertices and the con-
nections between them can be mapped to edges.
This is not possible for trajectory data.
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Yu et al. [4] mapped a road link to a 2D grid and assigned
to each grid the average traffic speed of the associated road
link. Zhang et al. [62] and Liang et al. [70] defined a 2D rectan-
gular space that encompasses all the trajectory points. This
space is then divided into grids. Finally, for each grid, the
traffic flow for a certain period of time is calculated as the
number of trajectory points that are recorded within the grid
during that period. Using this modeling, the entire space can
be seen as a city and the grids represent small regions within
the city. Yao et al. [67] used a similar method as the previous,
but they also modeled the traffic volume using CNN by
using data of a trajectory’s start and end. These four litera-
tures represent one of the major advances of the traffic flow
prediction field from the earlier classical statistical and
machine learning days; an easily visualizable traffic flowpre-
diction that utilizes trajectory data is now available due to
the introduction of CNN. Although, as can be seen from
Table 6, there are only a few works that utilize trajectory
data. This is mainly due to the difficulty of themapping.

Other CNN Uses. Some authors have also attempted to
use CNNs to capture the temporal aspect of the data, a task
usually reserved to the RNN class of methods. Ma et al. [54]
included both the spatial and the temporal dimensions by
modeling the traffic data as a tensor, where the rows repre-
sent the spatial aspect, the columns represent the temporal
aspect and the depth represents the different days. They
argued that using RNNs requires long input sequences
which can impact training time greatly and instead applied
CNN to capture both the spatial and the temporal aspects of
the data. Zhang et al. [62] captured the temporal aspect
using CNNs which are fed data from different time granu-
larities (e.g., weekly, daily, hourly) and Yu et al. [48] used a
one dimensional convolution on the time axis in order to
capture the temporal aspect.

4.2.3 Feedforward Neural Networks

FNNs perform three main utility roles in hybrid neural net-
works for traffic prediction: aggregating the output of one
or more subnetworks, incorporating external data (such as
weather and holidays data) to the network, and as a compo-
nent in the model’s submodule.

FNNs as Output Aggregator. FNNs are commonly used to
aggregate the output of one or more subnetwork compo-
nents in a deep neural network. For instance, Wu and Tan
[6] used an FNN to combine the outputs from one CNN
component and two LSTM components. FNNs are also a
natural component for CNNs and RNNs, since FNNs can
take the output from these networks and output a smaller
representation. FNNs’ usage to aggregate the output of a
CNN is displayed in [60], [58], [64], [67] and [4]. On the
other hand, FNNs’ usage to aggregate the output of an
RNN is diplayed in [56], [57], and [68].

FNNs for Incorporating External Data. FNNs are also com-
monly used to incorporate external data to the network,
because it can take inputs of an arbitrary dimensionality
and perform a transformation to ensure that the dimension-
ality of the external data and that of the other components
within the network match. Wu and Tan [6], Zhang et al. [62]
and Yao et al. [67] used an FNN to perform this task.

FNNs as a Submodule Component. FNNs are often used as
a component in a model’s submodule, such as attention

network modules. For instance, Pan et al. [69] used an FNN
to learn features from a road network, which enables the
network to learn which nodes in a road network are impor-
tant. He et al. [71] used an FNN for the same purpose,
although they do not use the graph structure.

4.2.4 Other Deep Neural Networks

Two other types of deep neural networks, Stacked Autoen-
coder (SAE) and Deep Belief Network (DBN), are also used
in traffic flow prediction [5], [46], [47], [50], [52]. However,
these models are rarely used; out of the 37 covered litera-
tures, only 6 of them use these methods. The main contribut-
ing factor of this rarity is that SAEs and DBNs do not
explicitly capture the spatial or the temporal aspect of the
data and thus tend to perform worse than the neural net-
works that capture such aspects. This has been demonstrated
through several experiments, such as in [4], [7], and [76].

In fact, SAEs and DBNs receive attention mostly at the
earlier years of deep neural network for traffic flow predic-
tion. We speculate that this is because early researchers are
concerned with the computation time optimization of the
trainingmethodology. SAEs and DBNs use the greedy layer-
wise trainingmethod [77] to pre-train their networkweights,
which accelerates the training in the long run. However, as
more and more complex techniques were introduced and as
hardware and software optimization reduce the compu-
tational time of these complex techniques, the middling
performance of SAEs and DBNs resulted in the two
being phased out.

4.2.5 Other Techniques

As this paper focuses on deep neural networks, we will not
discuss cases where other, non-deep-learning based meth-
ods are used as the main predictor. Rather, we discuss what
other techniques have been used to assist in the prediction
task alongside deep neural networks.

One of the most significant breakthroughs of recent work
in deep neural network for traffic flow prediction is the
graph-based methods; in particular, the graph convolution
operation. When applied to road networks, graph convolu-
tion works on the graph domain while regular convolution
works on the euclidean domain. However, road networks do
not conform to the euclidean space as roads and highways
that are close to each other may connect different parts of the
city and thus have very different traffic characteristics.

Li et al. [44] performed a graph diffusion process based on
a bidirectional graph randomwalk. Then, the resulting graph
diffusion was used in a convolution process which is then
incorporated into a Gated Recurrent Unit RNN. Cui et al. [63]
used a similar idea of graph convolution, but instead of using
the diffusion process, they proposed a method which
involves calculating whether or not it is possible to reach one
node from another under a certain number of time-stepwhen
the traffic is on free-flow condition. Cheng et al. [7] used a
directed graph which represents how traffic flows between
locations. Through this directed graph, it is possible to find
the upstream and the downstream locations. This informa-
tion is incorporated in a convolution layer. Yu et al. [48] mod-
eled the traffic network as a graph and proposed a spatial
graph convolutional layer. Pan et al. [69] modeled road
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network as a graph and used a graph attention network to
model spatial correlations in the network. Xie et al. [73] used a
novel component called GN block that takes a road network
graph as input and outputs another graph with the same
topology but different graph features. Finally, Xu et al. [74]
usedDeepwalk to transform a graph into a vector representa-
tion, which makes it easier to be incorporated into the deep
neural networkmodel.

4.3 Discussion

In this subsection, we discuss the overall trend of traffic pre-
diction research from several different perspectives.

4.3.1 Complex Versus Simple Models

As technology advanced on both the hardware and the soft-
ware front, complex deep neural networkmodels are becom-
ing easier to train. This has prompted researchers to combine
the capabilities of multiple deep neural networks, and even
add some novel components of their own creation. In Table 6,
we can see that the simpler “deep neural network” category
consists of papers from the earlier years of traffic prediction
research while “hybrid deep neural network” and “hybrid
deep neural network and graph theory” mostly contain
more recent papers. Hybrid deep neural networks combine
different types of simple deep neural network structures in
order to combine the strengths of each. In recent works,
graph theory is often applied as graphs can conform to the
road structure better.

While complex models are expensive to train, their per-
formance improvements have proven that the investment is
worthwhile. For instance, Li et al. [44] have demonstrated
that their encoder-decoder model with graph diffusion
managed to outperform simple FNN and LSTM. Not only
that, they also performed an ablation test to demonstrate
that their novel diffusion convolution module manages to
outperform simpler variations. Similarly, Do et al. [72] have
compared their method against simple FNN, LSTM and
GRU, showing similar trends. While we provide only two
examples due to space constraints, we can attest that many
complex hybrid deep neural network models have man-
aged to outperform simpler deep neural network models
and that many novel modules designed to capture spatial
and temporal correlations (e.g., spatial and temporal atten-
tion) have resulted in further performance improvement.

4.3.2 Benchmark Model Structures

We have observed that several of the most recent and best
performing models use the Encoder-Decoder RNN. In addi-
tion to the capability of processing sequential input data as
regular RNN, Encoder-Decoder RNN can output sequences
instead of a single result. This means that Encoder-Decoder
RNNs can take input data from multiple steps and also out-
put predictions multiple steps ahead.

To imbue Encoder-Decoder RNN with the capability to
capture spatial data, most of these works also utilize graph-
based methods. Graph-based methods are more appropriate
for traffic data compared to the more conventional methods
of dividing an area into spatial grids. The reason is that roads
close to each other may connect entirely different parts of a
city. It is more accurate to capture spatial correlations in

terms of the connectivity, which graph-based methods pro-
vide. Encoder-Decoder RNNs and graph-based methods
have been used by [44], [57], [69], and [73].

Graph-based models can be complex to implement as it
requires additional data as well as data preprocessing. An
alternative to this method is some sort of an attention mod-
ule that can model the spatial and temporal correlations in
the data. Encoder-Decoder RNNs and attention modules
have been used by He et al. [71], and Do et al. [72]. Despite
the complexity of Encoder-Decoder RNNs and graph-based
methods, we find that this combination has shown to be
very proficient at predicting future traffic and is one of the
more important recent developments of traffic prediction.

Summary. In this section, we list out and categorize 37
recent literature works on deep neural network for traffic
prediction. In the first subsection, we discuss the datasets,
the related hyperparameters and how they affect the predic-
tion task. In the second subsection, we discuss the models,
focusing on the three main deep neural network models.
Then, we described the less commonly used deep neural
networks as well as other accompanying techniques.
Finally, we provide a discussion section, in which we state
that graph based models are one of the most important
recent contributions to the traffic prediction field.

5 CHALLENGES AND FUTURE DIRECTIONS

In this section, we will first state several of the challenges
outlined by Vlahogianni et al. in their 2014 survey paper [9]
and discuss only the challenges that have been solved or
partially solved using deep neural network. Afterwards, we
will list several new challenges that the field of deep neural
network for traffic prediction faces. Please refer to the origi-
nal paper for the complete list of the ten challenges.

5.1 Existing Challenges

Developing Responsive Algorithms and Prediction Schemes. Sev-
eral of the recent works have attempted to address the prob-
lem of algorithm responsiveness in the face of unexpected
traffic incidents such as accidents and weather changes.
This is mainly done by using weather and accidents data as
additional inputs to the traffic flow prediction models.

Soua et al. [52] combined weather and traffic flow data
using the Dempster-Shafer theory. On the other hand,
Wang et al. [65] simply concatenated weather and traffic
flow data while Zhang et al. [62] performed simple addition.
However, these works lack ablation tests which can reveal
the effectiveness of utilizing weather data.

Conversely, the work of Zhang and Kabuka [56] incorpo-
rated weather data by embedding them into the traffic flow
data in their test and performed a simple ablation test,
which proved that the inclusion of weather data does
improve prediction performance. Additionally, Yu et al. [55]
performed a network stimulation test to understand the
effect of sudden traffic accidents.

As we can see, several authors have tested the impacts of
weather and accidents in traffic flow prediction. Although
several experiments have proven that the addition of these
data can increase the prediction power of the models and
increase their responsiveness to unexpected changes in traffic,
this facet of traffic prediction has not been explored in great
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depth. This is due to the difficulty of incorporating these
external data. Overcoming the challenge of data incorporation
is the first step in utilizing weather and non-recurring inci-
dents data in general to improvemodel responsiveness.

Freeway, Arterial and Network Traffic Predictions. The
authors mentioned several related sub-challenges: the com-
plexity of urban arterial traffic prediction, network-level
traffic prediction and the incorporation of network dynam-
ics on traffic prediction. We will discuss them below.

While the prediction of traffic in urban arterial roads and
network-level traffic prediction are dissimilar challenges,
the cause is the same: the lack of traffic detectors on urban
arterial roads. This is because installing traffic detectors is
costly and thus, is often done only on highways. However,
the increasing amount of trajectory data has resulted in an
alternative solution for network-wide prediction, as car tra-
jectories cover both arterial and highways alike. Trajectory
data is used in:, [4], [54], [62], [65] and [67].

The third challenge, incorporation of network dynamics
on traffic prediction, is caused by traffic flow readings not
inherently containing road network data. Therefore, this
operation has to be done manually through data modeling.
The most popular method to capture network data is to use
graph-based methods. The literatures that cover this
method are: [7], [48], [44], and [63]. Due to this ability of cap-
turing the dynamics of road network, graph-based method
is a promising future research direction.

Temporal Characteristics and Spatial Dependencies. The
advances of deep neural network have brought forward
two crucial network structures: RNN and CNN. These two
networks can model the temporal and spatial patterns of
the data, respectively. Please refer to Sections 4.2.1 and
4.2.2 for a more detailed description of how these models
are used to capture temporal characteristics and spatial
dependencies.

Explanatory Power, Associations and Causality. Neural
network’s prominence in traffic flow prediction can be
attributed to the model’s flexibility. This is because the func-
tional form of neural network models is approximated via
learning, as opposed to classical statistical models which
assume the functional form a priori [24]. Consequently, neu-
ral network models’ internal parameters are rarely explored
because they are hard to interpret as their focus is mostly on
raw prediction performance rather than interpretability.

Performing explanatory analyses on neural networks
may uncover useful traffic patterns. Li et al. [44] observed
the traffic diffusion along the road network and the correla-
tion between several adjacent traffic sensors. Cui et al. [63]
visualized the network weights pertaining to different
detector sites to find key road segments in the traffic net-
work. Cheng et al. [7] visualized the attention weights of
upstream and downstream stations to observe how traffic
flow moves across several traffic stations.

While neural networks have proven to be a very effective
prediction model, they are infamously known as black-box
models; models that are difficult to dissect and explain.
Although the aforementioned authors managed to explain
the traffic phenomena to some degree, their observations are
mostly limited to the spatial aspect; observing how the traffic
at one site affects another and how traffic propagates across
the road network. To the best of our knowledge, there is no

work that observes other aspects of the prediction, such as
the dynamics of abrupt weather changes and accidents.

5.2 Future Challenges

The power of deep neural network as prediction models has
brought forward new challenges, both for the models and for
the field as awhole.Wewill nowdiscuss these challenges.

A). Lack of a Benchmark Dataset. The availability of a wide
range of traffic data supports traffic prediction. However,
this availability also poses a challenge to comparative work.
Due to the fact that different works use different datasets, it
is very hard to assess the relative performance of different
state-of-the-art models. The Caltrans data is the closest to a
benchmark dataset, as it is used by 14 out of 37 literatures
we have covered. However, different works use different
subsets of the Caltrans from different periods of time and
from different traffic detector sites.

Choosing a subset of data within a larger dataset also
poses a challenge. As temporal and spatial correlation
affects traffic greatly, the period of the data and the traffic
detector locations become important considerations. For
instance, when using data that covers a period of less than a
year, there is a risk of not capturing the seasonal effects on
traffic, and when using only weekdays data, the models
cannot learn weekend traffic well. For the spatial aspect, the
choice of roads or highways can greatly affect the traffic
flow as metropolitan roads have significantly busier traffic
compared to rural areas, and long interstate highways tend
to cover both rural and metropolitan areas. Models that are
trained on a certain traffic condition may not perform well
when used to predict traffic on significantly different traffic.

Both point and trajectory data have their advantages and
disadvantages. Point data generally comes from traffic detec-
tors installed by the transportation bureau. Consequently,
the system is well-established, resulting in better temporal
coverage. However, as traffic detectors are costly to install,
they are mostly limited to highways. Conversely, trajectory
data has a more general spatial coverage as drivers pass
through arterial, urban and highway roads alike. However,
the temporal coverage is limited, ranging from a month [67],
[68] to several months [4], [62], [67] and up to one year [53],
[65], compared to the Caltrans data, for instance, which con-
tainsmore than five years’ worth of data for its detectors.

For deep neural network models to perform well on real
applications, the dataset needs to mimic real data. There-
fore, it is important for benchmark datasets to cover enough
time frame and locations so that the models can generalize
well to any traffic situations. To overcome this challenge,
the following criteria are important:

� The data covers both urban and rural areas.
� The data covers both weekdays and weekends.
� The data covers all hours of the day.
� The temporal range is at least one year.
The installation of traffic detectors is expensive, and

point data’s spatial limitation is difficult to address. There-
fore, we recommend focusing on trajectory data. Floating
car data collected from GPS is the most widespread and effi-
cient source of trajectory data. However, researchers must
take into account the required preprocessing to use trajec-
tory data for traffic prediction.
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B). Difficulty of Incorporating External Information With
Traffic Data. In traffic prediction, commonly used external
information include weather, accidents, events, day of the
week, time of the day and social media data. While the
inclusion of day of the week and time of the day is relatively
simple, data that are bound to a specific geographical coor-
dinate or a geographical area is difficult to incorporate with
traffic data. This is because the process requires the coordi-
nates of detection points (in the case of point data) or trajec-
tory points (in the case of trajectory data) to be mapped to
the secondary data. A benchmark data that covers a specific
area within a specific period, complete with relevant sec-
ondary data will greatly benefit the traffic flow field. We
recommend the following sequence of actions:

1) Establish a benchmark dataset that has sufficient
spatial and temporal coverage based on the require-
ments mentioned in the previous challenge.

2) Add day of the week and time of day data by
concatenating themwith the traffic reading data.

3) Add geographical-related data, such as weather and
accidents data to every traffic data reading. For
instance, one reading at a particular time stamp and
location will have both the traffic flow, current
weather and accident type, if any accident occurs at
the location.

C). Online Learning. With the widespread installation of
traffic loop detectors, traffic data will continuously grow. In
this setting where new data is incrementally added, traffic
trends will shift over time. This is applicable even for the
same traffic detector site. This idea is called concept drift and
it causes the relationship between the input and output data
to change over time, rendering models that are trained on
past data to degrade in performance on present and future
data.

One way to mitigate this problem is to incrementally
update the prediction model with new data in real-time, in
a process often called online learning. However, to the best
of our knowledge, there is no work that explores online
learning in the traffic prediction domain. This can be attrib-
uted to the time complexity of training hybrid deep neural
network model and the lack of attention to the concept drift
problem. Online learning is a promising subtopic to explore
in the field of traffic prediction as this will ensure that com-
plex deep neural network models are always up-to-date.
Experiments that seek to identify the viability of online
training will need to take into account the following factors:

� The frequency of which the deep neural network
models need to be retrained. Practitioners need to
ask the question “How often do we need to update
our prediction model to ensure that it is always up-
to-date?”

� The number of data points required for the update.
This is affected by the frequency, and has to reflect real
life scenario. Practitioners need to ask the questions
“Howmuch data canwe acquire during a certain peri-
od?” and “How long will it take to collect and prepro-
cess the data to fit it into the predictionmodels?”

� The time required for the model to be re-trained
using the specified number of data points and
whether or not it is suitable for real life scenario.

Practitioners need to ask the question “With the
available amount of data, will the training of the
model be fast enough such that daily operations are
not hindered?”

D). Using Graph-Based Methods to Capture Spatial Aspect of
the Data. As we have discussed in Section 4.2.5, graph based
methods are a promising development of traffic flow pre-
diction, because they naturally conform to traffic dynamics.
However, the difficulty lies in the data requirement and the
additional preprocessing step. The road topology data,
which captures how different traffic detection sites are con-
nected by roads, is usually unavailable and has to be manu-
ally curated. While this challenge is significant, it is
important to measure and understand how well graph-
based methods improve the traffic prediction performance
when combined with deep neural networks.

E). Exploring Other Traffic Prediction Tasks. Currently, the
Intelligent Transportation Systems (ITS) field greatly
focuses on traffic flow prediction, neglecting the other traffic
prediction tasks. Exploring these subproblems may bring
new insights that are able to help the main traffic prediction
task. As we mentioned before, deep neural network models
are black-box models. Models that are trained on the traffic
flow prediction may not be able to explain the intricacies of
traffic patterns. Additionally, each of the subproblems is
interesting by itself as its results can be directly used by
drivers and traffic management bureau alike to make edu-
cated decisions. One example of these prediction tasks is
traffic congestion analysis. Knowing how traffic congestion
moves throughout the network can assist in the traffic pre-
diction task.

F). Lack of Up-to-Date Experimental Evaluation. The intro-
duction of deep neural network libraries such as Keras [12],
PyTorch [13] and TensorFlow [14] has simplified the imple-
mentation of complex hybrid deep neural network models.
As we have observed, this has resulted in numerous unique
hybrid structures, each focusing on specific ideas to improve
prediction performance. However, there is a lack of up-to-
date and comprehensive experimental evaluation, making it
difficult to assess how promising these specific ideas are.

Experimental evaluation in traffic flow prediction is com-
plex due to two factors. The first is the lack of benchmark
dataset, a problem that we have discussed previously. The
second is the lack of code availability. One might attempt to
recreate the model from the author’s description. However,
while the deep neural network aspect can be recreated rela-
tively easily, novel components such as graph diffusion are
difficult to build in a way that is faithful to the source
material.

This lack of experimental evaluation is perhaps the big-
gest challenge that the traffic flow prediction community
faces. Addressing this problem will enable practitioners to
easily identify the effectiveness of new ideas in improving
prediction performance, model efficiency, and the overall
applicability of deep neural network models in real-time
traffic prediction applications. A benchmark experimental
evaluation needs to take into account the following insights:

� The impact of each model’s novel ideas to the predic-
tion power, particularly for models that use a similar
network structure.
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� The impact of using a certain neural network type
such as CNN and RNN.

� The viability in real life applications with respect to
the retraining time. That is, online learning using a
realistically sized batch of data, e.g., data from one
week.

� The impact of using external information such as
weather and accidents data. This can be observed by
performing an ablation test on models that utilize
these external information.

G). Applying Emerging Techniques There are several
emerging techniques that have been applied to the problem
of traffic flow prediction. However, as these technologies
are still in their infancy, they are much rarer compared to
the more conventional deep neural network structures dis-
cussed in the previous sections. Two promising new techni-
ques are Transformers [78] and Generative Adversarial
Networks (GAN) [79].

Transformers are similar to encoder-decoder RNNs in
that they take sequences as inputs and outputs sequences.
The difference is that Transformers are designed with atten-
tion mechanisms in mind and can be parallelized. The origi-
nal paper by Vaswani et al. [78] applied Transformers to
machine translation, but it has since been applied to traffic
flow prediction by Xu et al. [80].

Generative Adversarial Networks consist of two neural
networks that are trained to compete with each other. The
two networks are generative networks, designed to capture
the data distribution, and discriminative network, which
judges whether a given sample came from the true data or
from the distribution generated by the generative network
[79]. This method has been used by Liang et al. [81], which
use LSTMs for both the generative and discriminative net-
work, and by Lin et al. [82], where a GAN is used to enable
traffic flow prediction that is more robust to outliers. Zhang
et al. [83] combine GANwith graph CNN, and use sequence-
to-sequence autoencoder for the generative network.

While state-of-the-art models that commonly use encoder-
decoder LSTM combined with graph-based methods, have
achieved excellent performance, these promising new techni-
quesmay be able to further improve the performance of traffic
flowprediction.

6 CONCLUSION

Traffic flow prediction is one of the easiest and cheapest
measures to address traffic congestion. In this work, we
have explored how the field of traffic flow prediction had
evolved over the time from classical statistical models, to
machine learning models and finally to deep neural net-
work models; described the common deep neural network
structures, how they work and how they are able to learn
specific features from traffic data; listed out and compared
the numerous deep neural network for traffic flow predic-
tion literatures; and identified the existing and future chal-
lenges faced by the traffic flow prediction field.

We believe that the future of the traffic flow prediction
field lies on determining a more standardized approach
that ensures that the significance of every novel idea can be
identified. The first step is to establish a comprehensive
benchmark dataset that enables the multitude of traffic

factors to be explored; not only from the spatiotemporal
side, but incorporating social media data, weather data,
accidents data and many other external data that might
affect traffic prediction. Then, the next step is to provide
more transparency in this research field. Implementation
details and publicly accessible codes will be necessary. The
final step is then to provide readers and practitioners alike
with an up-to-date, thorough snapshot of the current advan-
ces in the field. Continuous survey and especially experi-
mental evaluation work contribute to this goal.

We hope that the advances of the traffic flow prediction
field will inspire confidence and eventual widespread
implementation of real-time prediction systems that can
directly contribute to the improvements of traffic condition
worldwide.
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